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This report describes a recently developed technique for the rapid
realization of compilers for new source languages and new target machines.
The method is built around a table-driven translation algorithm,

which was announced some time ago*. This algorithm is embodied in a
small general-purpose (language- and machine-independent) program, called
the "Translater", which accepts strings of characters, syntactically
analyzes them, and emits pseudo-code macro-instructions, performing
arbitrarily complex investigations of syntactic context to decide this
emission.

The Translater is particularized to a given source-target pair by a

set of tables which define the syntax of the source language and the
strategy to be used in studying context and emitting macros. The newly-
developed technique consists of the creation of a readable, formal language
for describing both the syntax and the strategy of macro generation; thus,
the Translater can, by translating a message in this new language, create
an instance of its own tables. '

This capability of the Translater is formally trivial and would be of

little interest, were it not that:

1. That portion of the language which defines syntax corresponds
very closely with the "Backus normal form" and can be transe
literated almost directly from any conventional formal description
of syntax. )

2. That portion of the language which deals with the strategy of

’ macro emission is fairly powerful and rather surprisingly
reédable.

In the sequel, we first sketch the Translater algorithm sufficiently

well to introduce the critical control tables. Then we describe the gross

*S. Warshall, "A Syntax Directed Generator", Proceedings of the EJCC,
1961, Macmillan and Co., 1961.
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strategy of the "bootstrap" operation and finally define the language in

which new compilers are defined to the bootstrap.

A pictorial representation of the syntax of the new language for
translation description and a sample "program" in that language (describing
the translation of a conventional algebraic language) are supplied as
appendices.
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. Introduction

The Translater is a general-purpose program which accepts strings in
a source language, syntactically analyzes them, and emits a sequence of
messages (which we call "macros"); the selection and emission of these
messages may be triggered either by very local syntactic recognition or
by rather complex investigation of syntactic context.

The emission of a macro actually consists of two activities: the
construction of a macro descriptor and the call of a separate program (called
the In-Sequence-Optimizer, or "ISO") which accepts and processes the
descriptor.

The Translater is general-purpose in the sense that it is capable
of syntactic analysis of any of a wide class of languages and of imple-
menting any of a wide class of decision procedures for controlling macro
emission by investigation of syntactic context. This generality is achieved
by the use of tables which define the syntax of the source language and
tables which define the decision procedure. The Translater itself is a
relatively straightforward program which simply accepts a source language
message and uses the tables to process it.

The "syntax tables" may be viewed as a coded representation of
some standard formal definition of a language's syntax (for example, the
Backus notation). Similarly, the second set of tables ~- which we will
call "generation strategy tables" -- nlay be viewed as an encodement of
a class of statements defining the decision procedure. It is well known
that a common formalism may serve for the definition of any of the usual
programming languages and thus the possibility of using a standard program,
with different tables for different languages, is clear. However, the
existence of a convenient formalism for describing generation strategy --
and thus the possibility of a general-purpose algorithm controlled by a
tabular encodement of a strategy -- is by no means as obvious.

We have devised such a formalism, which is adequate to describe
fairly complex strategy more or less concisely.

e e e e it




The nature of the formalism in turn implies a table design and an
associated algorithm -- the "generator" -- controlled by the tables.

The essential trick in the development of this formalism is the
use of a tree-representation of the source-language message (which is
the "natural" output of an analyzer). This tree -represeritation provides
a convenient domain over which to define both contextual constraint and
macro emission.

The formalism for describing generation strategy is itself a lan~-
guage -- "generation strategy language" -- and, in particular, a language
describable in the Backus notation. This suggests the interesting possibility
of a "bootstrap" compilation. That is, if one were to construct by hand:

l. A set of tables which define the syntactic structure of (say)
the Backus notation (BNF) and the generation strategy lan-
guage (GSL);

2. A set of tables which define the generation strategy for

4

k’ ; inspecting tree-representations of BNF and GSL formulas and
emitting macros;

3. An algorithm which accepts these macros and interprets them

' as orders to build lines of a set of translater control tables;

: Then one might, by putting this latter program in place of the 1SO,
j use the compiler to create instances of the tables which control it.

In fact this is precisely what has been done. A program called
the "Bootstrap ISO" creates, by processing macros, a set of prototypes
of the control tables; then, after the entire BNF-GSL message has been
processed an additional set of algorithms converts these prototype tables

to final form. Since the actions performed by the Translater in executing
the bootstrap translation are a proper subset of those it is capable of
performing, and since the bootstrap runs better if the Translater can do a
['1 few things in a slightly different way, the Translater is “tuned" (slightly
| altered) in the bootstrap version; however, it is essentially the same,
standard universal algorithm.

—_—l /] /=
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The remainder of this report is divided into two sections. Section
A describes how the Translater works; Section B defines the bootstrap
Translater by sketching the function of the Bootstrap ISO and defining the
formalism BNFGSL -- the language which the bootstrap Translater in fact
translates. '
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A.l.

The Storage of Syntax Rules

The formal languages in which we are interested may all be
described (to within some special trickery for certain "small" types,
like character strings) in the metalinguistics of the ALGOL 60 report*
which has been called "b.n.f." (for Backus normal form). That is,
each type is defined by a statement consisting of the name of the type
enclosed by the signs "<" and ">" followed by the sign "::=" followed
by a description of the alternative rules for forming the type, separated
from each other by the sign "I“-. Each of these rules is in turn formed by
concatenating "components" in the order in which they must be found to
satisfy the rule. A component is given either by enclosing a type name in
the signs "<' and ">" or by explicitly giving the exact symbols of the source
alphabet to be recognized. Naturally, the metalinguistic signs are all
excluded from the source alphabet.

Thus, each type may for our purposes be viewed as given by a
form like:

<type> 5= C; C, | C, C; Cq | C,

where the C 1 represent either types or specific strings of characters.

The right-hand side of such a statement may be represented by a
binary tree in which nodes correspond to components. The right son: of a
node is the next component in the rule and the left son is the first compo-

nent of the next alternative rule. Thus, the example would be represented
by:

(We will conventionally draw right sons to the right and left sons
below, in order to simplify layout.)

*"Report on the Algorithmic Language ALGOL 60", Naur(ed.) et al,

Communications of the Agsociation for Computing Machigery, Vol. 3,

No. 5, May, 1960

/
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This naturally suggests the application of the distributive law to
shorten the statement and thus the tree. The right-hand side of the
example means, conceptually, C1 (Cz | C4 CS) IC3

pu—gy

and the corresponding tree

Tl Tz
C3 CT—Cs
is what we clearly wish the analyzer program to work with. After ali, the
successful recognition of a C1 followed by a failure to recognize a C2
should lead directly to an attempt to recognize a C4 instead of a CZ’
rather than a re-investigation of alternatives to the entire formation.

It sometimes occurs that one formation for a type looks precisely
like another followed by some additional component(s). Thus, we introduce

a special symbol into the tree, which indicates successful completion of

e o
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a formation even though a failure to continue it was encountered. This
mark, which we will designate by "T" and call the "terminal" mark, is
found only as a left son and may not have sons itself.

Example:

C); Gy Gy

C

~
1 72

[ Bl | ﬁ
=3

[Remark: It appears to be true of the source languages with which we are
dealing that one is always safe looking for the longest formation for a type
first and this assumption is made in order to shorten and simplify the

]
D

analyzer algorithm. ]

Recursive Definitions

If the definition of a type R includes a formation whose first
component is R, we call that formation "left recursive"”; we define "right

[
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recursive" analogously. We specifically exclude any formation which
mentions R twice, although we permit an arbitrary number of formations of
R to mention R once. Left and right recursive definitions are not stored
as written, but are revised to eliminate explicit mention of R.

Let us assume that a definition has been appropriately reordered
so that it may be expressed as, for example:

1 2

| 2 3 T4 R
R |
T}
| t |
t
r R —Cyq

-
~N
ml
—aQ
o

The essential features of this reordering are as follows:

1. There is only one node No' representing R on the left; No

I has no left son.

L 2. The tree is really two distinct trees connected through N 1
3. All nodes representing R (except for N o) are in the upper

] tree with right sons of zero.

We process this tree as follows: |
1. Take the right son of No (denoted N 1). I
2. Erase N o (setting left son of its father to zero).
‘ 3. Take every node representing R; replace it by a "null type”

and set its right son to the trunk of the tree.
\ l 4. Take every node whose right son is zero and set its right
son to N 1




|
' 5. Take every node whose left son is T and set its left son to
Nlo
l 6. Beginning with N 1’ take left sons until a node N2 is
encountered with left son of zero. Set left son of N2 to
f T.

.The effect of all this processing is to command a re-~éntry of the
trunk for all right recursives until a successful formation has been effected.

;.-_1

Then, using the left recursive formations, efforts are made to extend it as ,
- long as possible.

]
o
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A.2.

The Storage of Generation Strategy

Generation strategy is stated in terms of the nodes of a tree
representation of a source language formula, an/d is composed as follows:

1. A set of rules for distinguishing kinds of node is given.

Nodes are naturally distinguished by the syntactic types
they represent; they may be further distinguished by their
syntactic context.

2. Each distinct kind of node is assigned a short sequence of
commands. Each command either defines an action to be
performed (like, for example, the emission of a macro) or
names another node of the tree.

The generator algorithm starts at the trunk of the tree and walks
from node to node, at each node pausing to execute a command assigned to
that kind of node. If the command indicates an action, that action is per-
formed; if it names another node, the generator moves to that node. Upon
each successive consideration of a node, the next command in that node's
sequence of commands is considered. Whenever a considered node has no
commands left, control moves automatically to the node's father in the tree.
Some actions have variables of call, which may be (arong
other things) the names of nodes of the tree. These names and the names
of nodes given as commands and the names of nodes given in the context
descriptions are all expressed by "relative tree names" -- that is, by
rules for getting from any given point of the tree to some other. These rules
take the form of a sequence of steps. Each step is either the name of a
*neighbor" (e.g., FATHER, SON 3) or of some line item of a node.
Typical relative tree names might be:
FATHER * RTSIB * SON 2
SON 2 *SON 3 * SON 1
At any given moment a relative tree name is interpreted with
respect to the node which the generator is currently considering.
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A.3.
izat _ 1

The Translater is controlled (after initialization) by a syntactic
analyzer called ANALYZ. '

ANALYZ is entered with a syntactic "goal": to recognize some
specific syntactic type, starting at a specified character of the input
string. Initially, the goal is "program”, or its equivalent, and the
starting character is the first. Every goal leads either to a new goal
(if the current type is defined in terms of another type) or to an inspection
of the input to find either a specific symbol string (stored in SSLIST), one
of a finite set of specific symbol strings (stored in SSLIST), or one of a
class recognized by a special scanner (e.g.,an identifier or an integer).
When a goal is found to be impossible to meet, the analyzer consults the
syntax tables SYNTRE and SYNPT and either sets up an alternative goal at
the same point of the input string or, if there are none, backs up the
string to try an alternative interpretation of previous material.

Whenever a syntactic type which has been marked as "big" enough
to call the generator (see B. 5.) is completely recognized, a call on the
generator code, GENRAT, is made. During the course of recognition, a
tree-representation (OUTREE) of the structure of that syntactic type was
constructed.

GENRAT starts at the node (OUTREE line) which represents the
syntactic type which caused the GENRAT call. At each node which it
considers, GENRAT calls PREDIC to decide what kind of node it is.

The algorithm PREDIC, using two control tables, considers both
the syntactic type of the node and the nature of its context. The first
of these control tables, PREDPT, contains an entry of each different
kind of node. All kinds which are cases of the same syntactic type are
stored contiguously in PREDPT and are pointed to by the SYNPT line for
that type. Each line of PREDPT points in turn to the second control table,
PRDCAT, in which is stored a list of (contextual) predicates to be satisfied
before the node is adjudged to be of that kind. At the end of each list of
predicates in PRDCAT is a pointer to the list of activities for nodes of
that kind (see below).
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Given PREDIC's result, GENRAT proceeds to do whatever need be
done at nodes of that type on the n-th occasion they are considered.
(GENRAT control keeps track of the current value of n for each node),

Lists of activities associated with different kinds of nodes are
found in the table SEQLST. These activities either consist of transfer
of consideration to another node or of a set of actions to be performed.

If the latter, the set of actions is listed in the table ACTION. If any
action has variables of call, these are listed in the table GVBIST. The
routine ACT controls the execution of required actions.

Some actions involve the transmission of information to the
optimizer. This is generally accomplished by putting the information into
a communication table called SHPLST and calling the optimizer (ISO). Some
of this information requires a certain amount of interpretation before being
placed on SHPIST. The routine PUTVBL interprets certain kinds of encoded
variable descriptions (found in GVBLST) and places its result in SHPIST.
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Organization of the Routines

ANALYZ

GENRAT

PREDIC

ACT

PUTVBL

ISO
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Organization of the Control Tables

SSLIST
SYNPT &——2 SYNTRE
PREDPT > PRDCAT
GVBLST 4-——1 ACTION €——  SEQIST
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Ihe language BNFGSL

The language BNFGSL is a vehicle for defining to a "universal"
compiler the particular translation it is to effect. A translater definition
written in BNFGSL falls naturally into two main sections: first, a formal
description of the source language, and second, a description of the
"generation strategy" for getting from recognized constructs in the source
language to corresponding computational commands.

The source language description controls a syntactic analysis
whose output is a tree representation of the recognized structure (called
OUTREE). When a "big" enough structure has been recognized, a call
upon a generator is made. The generation strategy description is written
in terms of a walk through this tree and has, as its central notion, the
idea of a "relative tree name", by which we mean a rule for getting from
the current node of the tree to some other node.

st o - i .



B.1.
The Definition of a Source lLanguade

A language description is composed of a set of "type definitions”
each of which defines a single syntactic type of the source language.

In general, a syntactic type is defined by a set of "“formations", or ways
to form a representative of that type from smaller structures. There may
be several alternative ways to form a type and thus a type definition may
include several formations. Each formation is made up of a sequence of
"components" which are to be concatenated to satisfy the formation. A
component is either the name of some syntactic type or a fixed symbol
string.

In BNFGSL, we use arbitrary identifiers to denote the names of
syntactic types. Fixed symbol strings are written by the following rule:
First write the character "$". Then write the characters of the desired
symbol string, unless one of them is either "$" or "/" or a blank. In
the latter case, precede each such character by a "$". The entire string
is delimited by blank or "/". We begin a type definition by writing first
the name of the type being defined, then the character "=", then each
of the components of the first formation in order, then the character "/ ",
then each component of the second formation, then another "/", and so on
until there are no more formations; then we write "//".

Examples:

MULOP =$§+*/$$///
AREX = TERM /AREX ADOP TERM //

In addition to the set of formations for the type, we require that
certain additional information be given as part of the type definition. This
additional material is given in the form of a list of "tags", separated by
commas, following the "//", and delimited by "/". The list of allowabie
tags and their meaning is as follows:
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FIXIST -

This type is defined by formations each of which has
one component only, and that component is a fixed
symbol string.

TLUAn (where n is an integer) - This type is defined, not by

GENRAT -

INHIBT -

METAGN -

ASSIGN -

INVOKE -

explicit formations, but by a special scanner --
specifically, the n-th such scanner.

This type is big enough syntactically to warrant a
call upon the generator.

This type is such that, while the analyzer is
endeavoring to recognize it completely, no generation
may occur (even if there is complete recognition of
types which normally cause generation).

This type is such as to trigger a call upon the
generator; however, the purpose of that call is to
process a declaration rather than to produce any code.
This type is such that once it has been completely
processed, any PRTECT's effected during its pro-
cessing may be disregarded (see discussion of
PRTECT, below).

Frequently, in the course of syntactic recognition, a
substantial tree structure will be built in OUTREE,
composed of a great many nodes of purely formal
interest buried among which is a single interesting
identifier. For example the simple construct "(A)"
might lead -- through the syntax of many familiar
languages --- to the structure:
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arithmetic expression

{

term

factor

(arithmetic expression)

|

term

factor

}

identifier: A

later on, during gensration, it would be convenient to minimize
investigation of this deceptively complex tree. The analyzer can detect
these situations -- if given a few hints -- by carrying some of the
properties of the components of each formation up to the node of the type
being formed. The requisite hint is that those types which represent the
variables of discourse (identifiers, integers, and strings, for example)
or unary operators (addition operators, for example, if they may be unary)
be tagged with "INVOKE". This will cause the automatic marking (during
analysis) of each node as either "HARD" or "EASY" according as the
subtree trunked by that node does or does not include at least two nodes
of "INVOKE" type. Loosely speaking, "INVOKEY types are such that exaétly
those structures containing more than one of them require some code
generations.
NULTYP - A "null type" is a type with no formations and is
always successfully recognized without using up
any characters.
The "language definition" section of a translater definition consists
of a set of type definitions bracketed by the strings "BNF.." and "/BNF",
respectively

e W p mats i
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Ihe Structure of OUTREE

That structure in OUTREE which corresponds tc any type
recognition may be deduced from its formations. Thus if a type is
given by:

A=BC/BCD/E//
and an A is in fact recognized, the resulting structure would be one of
the following:

B/A \C B/TC \D : I

That is to say, the sons of a node correspond, 1 -1 and in order, to
the components of one of its formations, with two exceptions.
1. If a type is marked FIXLST, nodes which correspond to it
will be terminal (have no sons).
2. If a formation is either left recursive or right recursive,
it will result in a "bush" of components at the same level
in the tree, with no explicit mention of the recursive type.
Example:
ADOP =$ + /§ - // FIXIST /
AREX = IDENT/AREX ADOP IDENT///
leads to the following representation of "A+ B+ C - D":

AREX
(7

IDENT:A ADOP:+ IDENT:B ADOP:+ IDENT:C ADOP:- IDENT:D
(5) (0) (6) (0) (?) (1) (8)

We refer to the nodes for the set of components of a type as the
"sons" of the node for that type, numbered from left to right. We call the
(n+l)St son, the "right sibling" of the nth. The meaning of "father" and
"left sibling" is the obvious one.

- e i
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The OUTREE actually contains a good deal of information at each
node in addition to a code for the syntactic type represented. Most of
this information is set and used by the compiler for its own internal
purposes. Some items however are either used or set (or both) as a
result of explicit indicators in the BNFGSL; these will be discussed below.
For the moment, we merely remark that one item of a node, called "NR",
always contains the appropriate one of the following:

1. The number of sons, if the node is not terminal.

2. The line number in the symbol tablz, the literal table,

or the table of fixed symbol strings, corresponding to the
node.

3. The relative number (starting with 0) of the formation,

if the node represents a fixed list (FIXLST type).

The parenthesized figures in the previously given tree are NR
values, assuming that "A", "B", "C", "D" are in lines 5, 6, 7, 8 of the
symbol table, respectively. Neither the identifiers themselves nor the
‘BCD-representations of "+" and "-" are carried explicitly in the nodes.
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B.3.
Thi 1 n_of a eration Strat

The "“generator definition" section of a translater description is
composed of a set of "generation statements" bracketed by "GSL.." and
"/GSL", respectively.

Each generation statement begins with a "condition" to be satis-
fied; then there follows (after a delimiting "“,") a set of activities to be
performed if the condition is satisfied. A condition begins with "IF"
followed by either the name of a syntactic type or a fixed symbol string.
Then there may be an -arbitrary number of additional "predicates" to be
satisfled. The different predicates are concatenated with "AND"s; that
is, they must a]l be satisfied in order for the condition to be met.

There are six kinds of predicates, which are as follows (where,
by "<R >" we mean any representative of the type R and in particular, by
"<r.t.n.>" we mean any relative tree name):

_...__«
—_—

‘Type Form Meaning
1. Zero test <r.t.n.>=0 True, if the named node is
on the tree.
<r.t.n.>X=0 Converse
2. Syntactic type «<r.t.n.> IS True, if the syntactic ¢ 2
test <identifier> of the named node is as
indicated.
3. Symbol test <.t.n.>= True, if the named node is
<fixed symbol precisely the string indicated;
string> it is assumed that the node

will represent either a fixed
symbol string or some syntactic
type tagged with "FIXIST" or

an identifier.
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TIype
4. Complexity
test
5. NR test
Examples:

orm

nin

<r.t.n.> IS HARD Tests the named node for the

«r.t.n.> IS EASY

NR(<r.t.n.>) =
<integer>

VTYP(<r.t.n.») =
<integer>

IF TERM AND SELF IS HARD,

IF ${ AND VTYP(FATHER*LFTSIB) = 6,

property described in the
section on the tag "INVOKE",
above.

True if the NR field of the
named ncode has the indicated
value.

It would be cornvenient if
declared or erncountered
properties of the indentifiers
could be discussed in BNFGSL.
In particular, it is essential
to be able to consider the
"variety" of the identifier
(function, packed item name,
or whatever), which is
presumed filled into the VARITY
item of the symbol table by
the declaration processors.
This test, which is well-
defined only if the named
node designates an identifier,
is true if the VARITY fileld of
the SYMTAB line number given
in the NR field of the named
node has the required value.

IF VARBLE AND SON2 X = 0 AND FATHER IS FACTOR,

-2-
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If a given node satisfies several different conditions, it will be
treated as though it satisfied the first in order of appearance ir: the
BNFGSL.

Following the condition and the delimiting "," is a "sequencing
list" composed of an arbitrary number of "sequencing elements" each
preceded by the character "$". The entire sequencing list is delimited
by a Il.".

A sequencing element is either a gingle relative tree name or an

"action list", by which we mean a set of "actions" to be performed.

Each action is given in functional notation: i.e., each is composzed of

an "imperative" naming the action followed by a list of ifs variables.of
call separated by commas and brackeied by a pair of parentheses. Actions
with no variables of call are giver simply as imperatives.

In order to understand the motivation of this section of the language,
it is helpful to view the generator as at any time considering some
particular node of OUTREE (initially that which triggered the GENRAT call).
It is this node with respect to which relative tree names are evaluated.

A node may be considered several times. When the generator considers

a node for the first time, it is determined whether that node satisfies

one of the conditions given in the BNFGSL. If it does, that rode

is set up to perform the activities indicated in the sequencing list
associated with that condition. The first time that node is considered,

it will perform whatever is indicated by the first sequencing element; the
second time, the second element; and so on. If an element is simply a
relative tree name, the generator will go orn to consider the node named by
that element. Otherwise, the generator will cause the execution of all

the actions on the action list which comprises that element.

If a sequencing element is a relative tree name and if that name is
not well-defined with respect to the node currently being considered, the
generator moves to the next sequencing element.

If we have run out of sequencing elements for a node or if a node

never meets any condition in the first place, subsequent attempts to consider

-3-




that node will always lead to immediate consideration of its father. If that
node is the node which triggered generation, the automatic walk to iig
father is the signal which causes return of control to the analyzer.

The imperatives are as follows:

OUTPUT -~

PUTVIA -

PUTVLB -

OUTPOT ~

PUTNAM -

LABEL -

MINE -

This has a variable number of arguments, but at
least one; its effect is to throw out onto a communi-
cation table (SHPIST) all the arguments in order and
then execute a call upon the ISO. The first argument
position is conventionally used to transmit the name
of the macro-instruction being output. Thus,
OUTPUT(SWITCH, SON3, NR(SONS)).

PUTVLA places its single argument in the first line
of the communication table SHPIST. PUTVLB places
its single argument in the next free line of SHPIST.

OUTPOT acts like OUTPUT, except with no arguments.

Both PUTVIA and PUTVLB interpret their arguments as
values (see discussion of MINE, below).

This places the OUTREE line number of its single
argument on the next free line of SHPIST.

This causes the current point in the output to be

labeled with the identifier given by its single argument.

Example:

LABEL(SON1)
Several imperatives (notably OUTPUT, PUTVLA, and
PUTVLB) give as arguments relative tree names whose
intended interpretation is as values. If a relative
tree name leads ' to a terminal node denoting an
identifier;, the interpretation is direct. If, however,
it leads to a non-terminal node, this may mean a
deferred reference to another terminal node (if the
non-terminal node is EASY) or may refer to the result
of a previously output computation. This means that
a certain amount of interpretation must be done
automatically by the generator. In order to provide

—4-




SET

COPY .

enough infcrmation to enable this interpretation,
the generator follows all executions of OUTPUT or
OUTPOT by marking the node whose consideration
directed the call with a code number for that line

of output. If later some relative tree name leads

to that node, the interpretive machinery will deduce
(by inspecting HARD-EASY codes, etc.) that this
node should have led to output and then obtain the
output line number from it.

A difficulty arises when the node N with which
the output is tc be associated for later interpretation
is different from the code N1 whose consideration led
to the output call. If the tree structure is simply
such that Nl is the trunk of the only interesting
subtree of the tree trunked by N, (by only "interesting",
we mean that nothing outside it contains any INVOKE
type codes), then the generator can quickly locate
the interesting N1 and proceed. If this situaticn does
not obtain, however, some hint must be given the
generator. The action MINE has the effect of
associating, with the node currently under consideration,
the last line which was output.

Example:
IF AREX AND SELF IS HARD,
$ SON1 $MINE.

The result of this would be that, no matter which
node in the subtree trunked by the arex actually
output the last line in the computation of its value,
future interpretation of the arex node as a value would
correctly be set to the last line of output.

Two fields are associated with each node, which may
be used to transmit OUTREE line numbers from node to

-5-
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Examples:

node. They are called "TRUE" and "FALSE",
respectively, since they are used commonly to pass
around, within a boolean expression, the true and false
jump destinations. The ordered pair composed of these
two flelds is called "TRUTAB".

SET and COPY each has two arguments, of which
the first is either "TRUTH" or "FALSTY" for both
and "TRUTAB" for COPY only. The second argument
is, in all cases, a relative tree name. For SET, the
meaning is to set the value of the indicated field
(TRUE for TRUTH, FALSE for FALSTY) of the node
currently being considered to the OUTREE line
number obtained by evaluating the relative tree name).
For COPY, the meaning is to copy the designated
field in the named node into the corresponding field
of the node currently being considered.

SET{TRUTH, RTSIB*¥RTSIB)
COPY(TRUTAB, FATHER)

BEGRGN
ENDRGN

BEGLUP
ENDLUP

These bracket a "region"; by which we mean a
segment of code suitable in size and character as

a domain for special register assignment coptimization.
These imperatives take no arguments. ‘

These bracket a region which is also a loop. Their
effect upon the ISO is the same as that of BEGRGN
and ENDRGN, save that in addition a search is made
for invariant parts of the computation so that they
may be moved out of the loop. No:arguments.

-6-
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BEGRTN
ENDRTN

BEGCND

PRTECT -

EXECUT -

These bracket a "routine", or file-able entity. No
arguments.

This pair brackets a section of a boolean expression
which may be jumped around (if booleans are handled
by conditional transfers). Its purpose is to prevent
the common subexpression detectors in the ISO from
assuming that certain values which pay be already
computed, always are. No arguments.

Example: (The brackets indicate possible jumped=-over
regions): - D :

IF A EQ B+C OR B EQ C+D AND Z EQ W+Y....

This imperative directs the ISO to prevent destruction
of the current value of its single argument (which muet
be a relative tree name denoting an identifier) until
that value is used. The purpoze of this device is to
protect against situations where embedded uilq'nmt
statements alter the intent of an arithmetic expression
or assignment. For example, consider:

ADY =X+ (I=1I+1)

If the intention is for A(I) to be interpreted in
terms of the old value of "I", one can emit a
PRTECT of the node representing the first "I* before
emitting outputs which cause the computation of the
righthand side of the assignment. The IBO will then
cause the old "I" to be saved before it is over-
written and reference the saved value when treating
A(l).

This provides a mechanism for ordering the run-time
execution of an arbitrary, independent. "hand-coded"

-7-
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program. It has one argument, -the name of the
program. The Bootstrap assigns integers to the
identifiers which appear as arguments of EXECUT in
order of first appearance starting with one. At run'
time the EXECUT is interpreted as a jump through
switch block to the n-th independent algorithm, where
n was the integer assigned. It is possible to force
the numbers assigned either by giving the desired
integer explicitly as the argument to EXECUT or
(better) by initializing the table (EXTPGM) in which
such identifiers are looked up and (appended if not
already there) by the Bootstrap. If it is desired to
provide arguments to an independent algorithm, they
can be placed on SHPIST by appropriate use of
PUTVLA, PUTVLB, and PUTNAM.
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Relative Tree Names

A "relative tree name" 1s of one of four kinds: either the fixed
string "SELF" (meaning the node currently under consideration), the fixed
string "NXTREE" (meaning the trunk of the next tree generated over), a’
"tree walk", or a tree walk bracketed by "LAST(" and ")".

A tree walk is a sequence of "steps" (encoding requirements
impose a practical limit on the number: say, seven), separated by
“*"  “Steps are chosen from the set:

FATHER - father
RTSIB - right sibling
LFTSIB - left sibling
SONIST - rightmost (last) son
TRUE - true field
FALSE ~ false field
SONn - nth son, where lsnal0
Example:
SON1*SON2

FATHER * RTSIB*TRUE*RTSIB

The interpretation of such a name is that (starting at the node
under consideration) one executes the steps in order, yielding as value
an OUTREE line number. If at any point a step is ill-defined (walks
off the tree) , the value of the name is set to zero.

If the walk was bracketed by "LAST(* and ")* and also walked
off the tree, then the value is set to the line number resulting from the
last step which stayed on the tree.
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Sample Translater Description

As a brief example, let us define an extremely simple language

translation in BNFGSL:

BNF..

IDENT = // TLUAl, INVOKE/

TERM = IDENT / TERM MULOP IDENT//

AREX = TERM / AREX ADOP TERM///

ADOP = $+ / ¥~ // FIXLST/

MULOP = $* / 8§ / // FIXIST/

ASGST = IDENT $ = AREX $. // GENRAT/

/ BNF

GSL..

IF ASGST, $ SON3 $ OUTPUT (STORE, SON1, SON3).

IF AREX AND SELF IS HARD, $ SON1 $§ MINE.

IF TERM AND SELF IS HARD, $SON1 $MINE $LFTSIB $RTSIB*RTSIB.

IF TERM, $LFTSIB $RTSIB*RTSIB.

IF IDENT, $LFTSIB $RTSIB*RTSIB.

IF ADOP, $OUTPUT (ADDSUB, NR(SELF), LAST (LFTSIB*LFTSIB),
RTSIB) $RTSIB*RTSIB*RTSIB.

IF MULOP, $ OUTPUT ( MPYDIV, NR(SELF), LAST (LFTSIB*LFTSIB),
RTSIB) $RTSIB*RTSIB*RTSIB. '

/ GSL

If the above deck is input to the Bootstrap, a set of tables for the

‘Translater will be generated. When the Translater, with that set of tables
and an appropriate identifier scanner, receives as input:

HENRY = A*B+C-D*E/F+G.
it will effectively output to the ISO the following:
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follows:

MPYDIV,
ADDSUB,
MPYDIV,
MPYDIV,
ADDSUB,
ADDSUB,

N o AW N
e o & s & e =

0,
0,
0,
1,
1,
0,

A, B

line 1, C

D, E

line 3, F

line 2, line 4
line 5, G

STORE, HENRY, line 6
The OUTREE which is constructed by the analyzer will look as :
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Formal Description of BNFGOL

This section contains a description of the translation of
BNFGSL written in BNFGSL.

The syntax-descriptive section of this translation description
should be comprehensible by reference to the previous discussion of
BNFGSL. However, it is difficult to understand the motivation for the
macros output to the Bootatrap ISO without at least a sketchy idea of
what the latter algorithm does with them.

. In brief, each macro emitted to the Bootstrap ISO corresponds
to a line of one of the seven prototype control tables being constructed.
These seven tables are prototypes of the following; respectively:

1. ACTION
2. GVBIST
3. PRDCAT
4. PREDPT
5. SEQLST
6. SYNPT
7. SYNTRE

The literal symbol table of the bootstrap compilation becomes the
eighth control table, SSLIST.

The first variable of call of the OUTPUT imperative names, not
a macro, but the number (1 through 7) of that prototype table of which
this call provides a line. The remaining variables of call correspond to
the line items of the line and require, for their completer understanding,
a discussion of the tables of the translater far too detailed for the scope
of this report. It should be noted however (by reference to the picture
of table organization in A.3.) that several tables contain line.-items
which point to other tables. The seven line counters of the prototype
tables being built supply the numbers of their “"first-unfilled" ' :s to
the Bootstrap ISO and thus this sort of item need never be given explicitly.
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BNF..

SYNTYP = // TLUAL /

INTGER = // TLUA2 /.

SYMSTG = // TLUA3 /

LNGDEF = $BNF.. TYPLST $$/BNF // GENRAT /

TYPIST = TYPDEF/TYPLST TYPDEF ///

TYPDEF = SYNTYP $ = FSTPRT SECPRT // GENRAT/

FSTPRT = FORMST $$/$/ /$$/8/ ///

SECPRT = TAGLST $$/ /$$/ //

TAGIST = TAG/TAGLST $, TAG///

TAG = $INVOKE/$ASSIGN/$GENRAT/$ METAGN/
$INHIBT/SFIXLST/$TLUA INTGER/$NULTYP//

FORMST = FORM/FORMST $$/ FORM///

FORM = COMP / FORM COMP ///

COMP = SYNTYP/SYMSTG ///

IDENT = // TLUAL /

GENDEF = $GSL.. GNSIST $$/GSL//

GNSLST = GENSTA/GNSIST GENSTA ///

GENSTA = CNDITN $, SEQIST $. // GENRAT/

CNDITN = KIND/KIND PRDIST ///

KIND = $IF SYNTYP/SIF SYMSTG ///

PRDLST = SAND PREDCT/PRDLST $AND PREDCT///

PREDCT = ZERTST/VTPTST/SYMIST/CPXTST/NRTST/SYNTST///

ZERTST = TRENAM EQREL ZERO///

ZERO = $0 ///

SYNTST = TRENAM COPULA SYNTYP//

SYMTST = TRENAM COPULA SYMSTG///

CPXTST = TRENAM $IS HRDNES ///

HRDNES = $EASY /$HARD// FIXIST/

NRTST = NRTRE $= INTGER ///

NRTRE = $NR( TRENAM $)//

-2~
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VIPIST = VIPTRE $= INTGER ///

VIPTRE = $VTYP ( TRENAM §) //

EQREL = $= / $ x= // FIXIST/

COPULA = $= / $IS // FIXIST /

SEQIST = $$$ SEQUEL/ SEQILST $$$ SEQUEL//

SEQUEL = TRENAM / ACTIST ///

ACTIST = ACT / ACTIST ACT ///

ACT = IMPER / IMPER $( VELIST $) //

IMPER = SOUTPUT/ $LABEL /$MINE/$SET/ $COPY/

SPUTVLA/ $PUTVLB/$EXECUT/$ OUTPOT /$BEGRTN /

$ENDRTN/$BEGRGN/SENDRGN/SBEGLUP/SENLUP/

$BEGCND/$SENDCND/$PUTNAM/$PRTECT// FIXIST/

VBLIST = VBL/VBLIST $, VBL //

VBL = TRENAM / INTGER/ SETTEE / NRTRE/IDENT///

SETTEE = $TRUTH/SFALSTY/$TRUTAB// FIXLST/

TRENAM = TREWLK /$SLAST ( TREWLK $)/
$SELF / $NXTREE///

TREWLK = STEP/ TREWLK $* STEP ///

STEP = $FATHER/$LFTSIB/$RTSIB/$SONLST/
$TRUE/SFALSE /$SATLPT/$SON1/$SON2/
$SON3/$SON4/$SONS /$SON6/$SON7/
$SONB8/$SON9/$SON10// FIXIST/

XLATER = LNGDEF GENDEF///

/ BNF
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IF

IF

IF

IF

IF

IF

IF
IF

IF

IF

IF

IF

IF

IF

IF

TYPDEP, S$IABEL (SON1) PUTVLA(6)
$SON4 $PUTVLB(30) OUTPOT $SON3.
SECPRT AND SON2 =0, $ FATHER.
SECPRT, $SON1*SONI1.
TAG AND SON2 = 0, $PUTVLB (NR(SON1))
$RTSIB * RTSIB.
TAG, $PUTVLB (NR(SON1j} PUTVLB (NR(SON2))
$RTSIB * RTSIB.
FSTPRT AND SON2 x= 0, $SON1 * SONI.
FORM, $SONI1 $RTSiB * RTSIB.
COMP AND SON1 IS SYNTYP AND
LFTSIB = 0, $ OUTPUT (7, 0, NR(SON1),
FATHER * RTSIB * RTSIB, RTSIB)
$RTSIB.
COMP AND SON1 IS SYNTYP,
$OUTPUT (7, 0, NR(SON1), 0, RTSIB)
$RTSIB.
COMP AND LFTSIB = 0,
$OUTPUT (7, 1, NR(SON1), FATHER * RTSIB *
RTSIB, RTSIB) $RTSIB.
COMP, $OUTPUT (7, 1, NR(SON1), 0, RTSIB)
$RTSIB.
GENSTA, $ SON1 $SONS3.
CNDITN, $SON1 $SON2 $OUTPUT (3, 0).
KIND AND SON2 = SYNTYP,
$OUTPUT (4, NR(SON2)).
KIND, $OUTPUT (4, 0) OUTPUT (3, 3, 0, NR(SON2)).
PRDLST, $SON2.
PREDCT AND SON1 = ZERTST,
$ SON1 * SON1 $OUTPUT (3, 1, NR(SON1 * SON2))
SRISIB * RTSIB.
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PREDCT AND SONI1 = SYNTST, $SON1 *SON1
$OUTPUT (3, 2, NR (SON1 * SON3)) $RTSIB * RTSIB.

IF PREDCT AND SONI1 = SYMTST, $SON1 * SON1

IF

IF

IF

IF
IF

IF
IF
IF

IF
IF

IF

if

H3

H3

$OUTPUT (3, 3, NR(SON1 * SON3)) $RTSIB * RTSIB.
PREDCT AND SONI = CPXTST, $SON1 * SONI
$OUTPUT (3, 4, NR(SON1 * SON3)) $RTSIB * RTSIB.
PREDCT AND SONI1 = NRTST, $SONI1 * SON1 * SON2
$OUTPUT (3, 5. NR (SON1 * SON3 )) $RTSIB * RTSIB.
PREDCT, $SONI1 * SON1 * SON2
$OUTPUT (3, 6, NR (SON1 * SON3}) $RTSIB * RTSIB.
SEQLST, $SON2 $OUTPUT (5, 2).
SEQUEL AND SON1 IS TRENAM,
$SON1 $OUTPUT (5, 0) $RTSIB * RTSIB.
SEQUEL, $OUTPUT (5, 1) $SON1 $RTSIB * RTSIB.
ACTIST, $ SON1 $OUTPUT (1, 30).
ACT, $OUTPUT (1, NR(SON1)) $SON3
$RTSIB.
VBLIST, $SON1 $OUTPUT (2, 0).
VBL AND SONI1 = INTGER,
$OUTPUT (2, 1, NR(SON1)) $RTSIB * RTSIB.
VBL AND SON1 = TRENAM AND
LFTSIB * LFTSIB * SON1 = SETTEE, $LFTSIB*
LFTSIB.
VBL AND SONI1 = TRENAM, $SONl
$OUTPUT (2, 2) $SRTSIB * RTSIB.
VBL AND SONI1 = NRTRE, $SON1 *SON2
$OUTPUT (2, 4) SRTSIB * RTSIB.
VBL AND SON1 = IDENT, $OUTPUT (2, 3, NR (SON1))
$RTSIB * RTSIB.
VBL AND SONI1 = SETTEE, S$RTSIB *
RTSIB * SON1 $OUTPUT (2, 5, NR(SON1)).
TRENAM AND SON2 x= 0, $PUTVIA (1)
$SON2 S$EXECUT (FILTRE).

-5~
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IF TRENAM AND SONI1 = $NXTREE , $PUTVIA (3)

EXECUT (FILTRE).
IF TRENAM, $PUTVIA (0) $SON1
IF TREWILK, $SON1 $PUTVLB(30).

SEXECUT (FILTRE).

IF STEP, $PUTVLB (NR(SELF)) $RTSIB * RTSIB.

/ GSL
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Appendix I

To assist the reader in visualizing the syntactic structure
of BNFGSL, we give here a pictorial representation of that syntax
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LEGEND

DEEINITION

Enclosed in this symbol is a syntactic
type or a symbol string.

This symbol contains the name of a tag
involved with a syntactic type.

This symbol contains an optional syntactic
type or symbol string.

Lines or rays emanating from a single point
denote sequential components. Thus,
Z QT A are the sequential components of E.

The circle denotes an OR junction. Here
we have A or B.

This symbol denotes the beginning of a
symbol string.
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) LNGDEF GENDEF

‘t BNF. . TYPLIST /BNF
| f TYPI?EF TYPDEF TYPDEF YPDEF TYPDEF |**’ D
‘ SYNTYP $= FSTPRT SECPRT GENRAT

| @ TAGIST /
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IS

4
 Zosnaties 4

LNGDEF

TER

GENSTA

GENSTA

!CNDI’I’N

EQIST
(page 7)

}

KIND
or
$IF YNTYP $AND
7 or
TLUAl

ZERTST

$IF iSYMSTG
VTPTST

< TLUA3 >
SYMTST
PXTST
<g———|

NRTST
SYNTST
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RENAM]

(page 6)

ERTST

EQREL

N

ZERO

FIXIST

INTGER

VTYP(

$)

(oo )

SYMTST
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CPXTST

HRDNES

—

SEASY

FIXIST

]

SHARD

RENAM

[page 6)

SYNTST
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TRENAM

SSELF

NXTREE

FATHER

SLPTSIB

S*

STEP

RTSIB

BSONLST

$FALSE

SSATLPT

—

$SON1

o—

$SON2

SSON10
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IMPER

or

L

EOU1 Putrl

BEL

$MINE

$SET

$COoPY

I

<
b

<>
o]
<
3

SPUTVLB

I

SEXECUT]

]

<y

OoUT P

/

SEQILST

SEQUEL

FiXLST

ACT

#

BEGRTN

or

R

‘ or ¢

TRENAM
(page 6)

ACTLIST

T~

- o Pttt

ACT

ACT

V3LIST

$)

V8L

o——

VBL

TRENAM
(page 6)

PBEGLUP

SENDLUF

$PRTECT

1
INTGER

( TLUA2 >

—

SETTEE

_or ¢

$TRUTH

FIXLS Tj

0—

$FALSTY

STR'JTAB

NRTRE

TRENAM
age 6) $)

SNR

IDENT

( TLUAL )
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Appendix II

The technique described in this report has been tested
experimentally be defining the translation of the algebraic language
Lo* (into IBM 7090) in. BNFGSL and bootstrapping an Lo Translater into
existence. To give some notion of the appearance of the BNFGSL for
a conventional algebraic language, we append a listing of the cards which
fed that bootstrap.

Obviously, the named "break-out" codes (arguments of EXECUT)
and the VARITY codes used in VTYP tests are not self-explanatory, but
much of the deck may be readable, and the approximate level of effort
involved in preparing a new BNFGSL deck may be estimated.

*G. F. Leonard, "Introduction to the CL-I Programming System", with
T. E. Cheatham, Jr., et al; Technical Operations, Inc., TR-59-6,
January, 1960.
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ICENT=//TLLAL ,INVCKE/

k INTGCER=//TLULA2 4 INVOCKE/ — ——

t W LCRTIN=CLRLEC LCBICY//GLNRAT/: ‘ ‘\§k_—~ —

; BOCP= $4/8-//FIXLST ¢INVCKE/ ) e \ "

» MULCP=38/$3///FIXLST/ : S Lo

- RELCF=4EC/SUESSLT/SLE/SCER/SGE//FIXLSYY
{ VARBLE = ITENT $t SUBSCR $) / ICENY///
- SUBSCR = ASSPHR / AR:X /1/ ,
ARY X= TERN/ ADCP TERM/ AREX ADCF TERN/Z/
1 TERVM=FACICR/IERM MLLCP FACICR/// _
1 FACTCR=VAKELEZINTCER/S( ARFX $)/$8( ASSFHR $)/7/
: ASSPHR=LPYILST AREX///
N ot LPTLST=LPTI/LPTLSTY LPT1//Y
‘ LPV=VARBLE $=///
IFPER=LFCLS UNCPHR $.77/
- IFCLS = $1F BGULEX 8, ///7
‘ 3 BOCLEX=BCCIRM/BCCLEX $SCR BOOTRNM///

PCCTRM = BCCFAC/BCCTRM $SAND BCCFAC///
| PGOFAC = $NCT PCOPRM/BCCPRM///
;TT BECCPRV = RELATN / $( BCCLEX $) / AREX /4//
1L RELAIN = AREX RELCF AREX///

i

|
.{ UNCPHR=GLSLEB/PUNPERZZY

f PUNPHR=SLE $./ IFSULE/PUNPHR SUE $./PUNFER TFSUE///
l SUE = ICEN] $$§ PHRASE / PHRASE//ASSIGM/
- ELLNEG = $ACTY ICENI///

i,‘ CCANPHR= S$CCNECT ICENI 710 1CENTZ/77

R COSUB=CCPrR/IGENI 88t CCPRR///

' GCPHR=COFART ICENT///

; I CCPART=$CCIC/$CO/$T1C//7FIXLSTY

EXPHRR=SEXIT/Z/FIXI ST/

3‘ SWPHR: $SWIICH ${ ARLX $,4 ICLISY $)/7/
‘4] (CLIST = ICCCHMPZICLILIST LECCNPZYY

LCCCMP=ILENT $,/ICENT/Y/)

TFSUB= IFPFR/ ICENL $$% [FPER//INKRIBT/
STATE = IFSLB/CECLAR/SULE $.//CGENRAL/
LCCCCE=STATE/LCCCLCE STAYE///

LCBCCY = SECNLC$/ LCCCEE $S$S/ENCLC/7/
CURLCEC = SRCUTIN ICENT//NETAGN/

CECLAR = TELITM / TRLDEL / RCNCCL /7 RYNKEC // CGENRAY /
NULL = Z/NLLIYEZ

CLCBPE = $CLCBAL $( [NYLLR $) 78CLCPRLZY//
ALCSTF = SLOCAN ZCLERPHINCILL 227
RINFER = JCENT $RIMN ALUSTF $987/FETAGN/
TELEEL = STABLE [VENT ENIG R ALCSTF 884 $BECIN//NEIACN/
TBLLITM = SITEM ICENT INIGER [NTCER INTGER 1$$//MEFACN/
i TBLITL = TELITM SENC/TRLLTV TELITLZ// :
TBLCEC = TELHEC T1RLITLZZZ _
RGNCCL = $FECREN / $ENCRGN // FIXLST, VETACN /
Py /ENF
f]i €St ..

f FF SUBSCR, S$SOUNIE SPUIVLAINR(LFISIBaLFILIF))
b EXECLICINLIPL) PLTIVLAIMPYCIV) FUIVLELL)
o PUIVLE(SCNE) EXECUT(LVLCCCN) CUIPLT EXECUT(RMCERY

- PHRASE = SWPHR/EXPHR/CCAPHR/EBULMNEC/ASSFHFR/CGCFRR/ICENT/Y/

Dot
MRt S 2
L, : {
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LHE driit, A% IPUIE RIS IReSON]

CJE BPCCLEX,4FCPY(TRUTAB, FATHER) $SCA1. e
IF BCCIRN ANC LFVSIB=0 AND-RTSIE=Cymacigims

o--1F BCCTRNM ANC LFTSIE=0,$COPY(TRUTH,EATHER) . ..

" 1F BCCEACTANE LFTSTB=0 "AND"

 PESHRE X SN L.

IF VARBLE AND SCN3aC ANC VTYPISCN1)=4 ANC

CUTPOT SLFT1SIE SPUTVLBISELF) PURVLE (LF1SEBathlSPeumingm, N
ILETSIE SEXECUTIFREBICN) EXECUTINRBICN). .
JF STAEF L$4CNY, B L4 Y
I 1ot ANL SCN2=C4$SCANLL ' ‘ ; C
[F IFSLB,SLAEBEL (SCN]) $<GN3.
IF IFPFR ANC NR(SON14#SCN2)- = 1 AND SCN1sSCN2#SCN1#SCN2 X= O,
$ SCA1 § SCN2eSPNL § ENDCNC .
[ fUPER, 1M1 IPECIND $SONZ2ASCA] SENDC'W -
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FATHER T ATFIARKISTR) 5§Ph?.

P70 ki AR D SRR
SCCPY(TRUTAB,FATHER) $SON1. e ] i

ARSI, T -

SET(FALSTY;RTSIE«RTSIB) $SCAN1 $BEGCNC

$RISIBARTSIE.

IF BCOTRM ANG RTSIE=0,$COPY(TRUTAB,FATHER). - S e
$SCN1 $ENDCAD. . - L e

IF BCCTRM, $CCPY (TRUTH, FAJHLR&V ELL AL e

RT‘IBdRTSIE) $SONT: SRS

~ f $CCPY(TRUTAR,FATHER) ’JONZ SSCNwaw.,a-

IF BGCFAC ANC LFTS1E=0,$COPY(FALSTY,FATHER)
SET(TRUTH,RTSIE#RTSIB) $SON2$SCNISEEGCN
SRISIB*RTSIB.

IF BOCFAC ANC RTSIBE = O ANC NR{FATHER#FATHER) = 1

g w«ANC FATHEER®*FATHER#FATHER IS IFCLS,

s CCFY(TRL[AE, FAIHER) $ SChZz ¢ <0'\1 .

FATHER) $SCN2 $SONL SRTSIBARTSEG S 9o mnm sdin Hulif xr v M
IF BCCFRM ANC LFTSIE=0,$COPY(TRUTAE,FATHER) :
$SCN1.
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1F AREX ANC SELF IS FARC ANC FATHER 1S eccraw » $SCAL ¢ HIAF
S$CUTFUT (RELATE, Ly SELFy Cy FATHER®#TRUE, -FATFERSFALSF)
IF AREX ANLC SELF IS HARC,$SCN1 $MINE. .
IF AREX ANC FATHER IS BCCPRM , § SCNI
FU' CTRELATE, 1, ")CNI. Qo - F""ER"‘!}BQ"

If RUNFHRy$SONTT ST
If SUB ANC SCNZ=0,$SCN1eSON1 sawtle-RTCIE. “f;gﬁ*;;:u~ s
1F SUB,$LABEL(SCN1) $SON3#SONL $RTSIB=RTSIE, " ‘
LE, SWPHRy $SCN3 SCUIPUT(ShITCH.SCNB,NQJ‘*' :
T SSCNETORR T S I At ST on
16 JDCLne.scutPur(swrnn.soxL).snlsle. e
IF EXPFR, $PEGRCN CULTPUT(EXIT) ENCRGN. e T B cimodl -
IF CCNPHR,  SCUTPLT ( COAERCIySEN ‘ sl it T .
1F GGPHR, $CUTPUT(TRANS,SCON2) . ' i
IF GOSLE ANC SCN2 X= Oy, SLABEL(SCN1) $SCA3.
1F GCSLB, $SCN1.
PE ASSFMRy. $SON2 $V¥ INE- $SONbw
IF LPTLST,$SCNIL.
1IF LPT, $SCN1 $RTSIE.
IF VARELE ANL SON3=C ANC VTYP({SCN1)=2 AMNC

FATHER 1S LPT, SCUTPUT(STORE,SCANI,FATHERaFATHER®RTSIR).
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Coaaed ERLIVLELLY SSOENL SPUTVLA(PLYT) $SCND
i dVLEAYATHERCFATHER#RTSIE) $SCN1,

o et e ART SCN3 X=0, $SON3 $CUTFCT.

Ii YARFLE ANI FAVHER IS LPT, SCUTPUT(STCRE,SCN1,
PAYREKRFATHERXRTLIN ).

IF ${ ANC RISIL IS SUBSCR AND FATHERSFATHER [S FACTCR,
$PLIVLE(C) SRTSIBZ SPUTVLA(GET) $RTSIE $RISIE.

IF $( ANC RISIE IS SUBSCR,
tPLTVLE(L) SRTSIH $PUTVLA(PUT) SRTSIE
SCULIVLE(FAIRFReFATHER#FATHERSRTSIE) $RTSIE.

If ¢) ANC VIYP(LFIZIB®LFTSIB*LFTSIE)=3,
$PLIVLE(C) EXECUTCACIVCN) $LFTSIE.

IF §) ANLC VIYP(LFTSIBSLFTSIBRLFTSIE)=4,
$PLTVLE(T) PUTVLBI(C) EXECUT(ADTVCN) S$LFTSIE.

IrF $( ,$RISISB.

IF TERM ANC SELF 1S FAREC,$SCN1 $MINE SLFTSIB
$RISTIEsRTSIB.

IF TERF,4SCNL $L/TSIE $RISIReRTSIB.

IF ALCFE ANL LFISIB=C, $RISIB SCUIPLT(SIGA,NR(SELF),RTSIB)

SRISIBRISIBTRISIR.

IF ACCF,$CLTPUT(ACCSUB,NR(SELF)LASTILFTSIEB*LFISIB),
RTSIE) SRTCIC#RTSIB#RTSIE.

IF FACTGR ANC SELF IS HARL,$SCN1 SMINE
$LFTSIF SRTISIBaRTSIE,

IF FACICR,$SONL SLFTSIB SRTSIB#RTSIE. ' /

IF MLLCP,,$CUTPLTIMPYCIV,NR(SELF)LAST(LFTSIEn '
LFISIE),RTSIB) SRISIE#RTSIRsRTSIE.

IF ICEMT ANl VIYP(SELF)=7, $CUTPUTIFUNC,SELF).

IF 1LENG AN FATHEK S ECCPRM, SCUTPUT{RELATE,I,
SELF o CoFATHIRBTRUE,FATHERSFALSE).

[+ ICENT ANC FATHER IS VARHLE, SPUTVLA(SELF) EXECUICINIIRPY)
PUIVLA(LOCATE) $FATHER $EXECUTIHCSKYP) PLIVLE(1)
PUIVLE(G) EXECLT(ACTVCN) NUTFCT S$FATHER $PLTVLE (SELF)
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(i .CENT, 3CLTPUT(STCRE,SELF,1). .

SLLNECE, SCUTPUT(STORE, senagg N o
7 LCRIN, $TNCRTN. Ve Lo s

If CURCEC, $PUTVLA(NR(SCNZ2)) EXECUT(MNYRTCC) BECRWN
1F lBLllP.iPUIVé:(NR(bGAZ)) PUTVLEB(NR(SCN2))
PUTVLE (NR{SCN4 Y'Y “PUTFVLE INR ('SONS ¥ 5--EmIsER ] Y0 C ) o5 T T
IF TELFEL AND SON4«SCN1 = GLCBPH, FIC ) e 9
$PLTVLAINRLSCH? 1) PUTVLE LELPE g %,'
" PUIVLB(NR{SCN4* SCNI#SONT 'y
[F TRLFHEL,
SPLTVLA(NR(SONZ2)) PUTVLEB(8) PUTVLB(NRISCN3))
PUTVLEB(C) EXECUT(TABLDC).
[F RGNCCL AND NR{SELF) = Luesyhrf
IF RGNCCL . .8 -&NERCN o . ... .
IF RINFEL ANC SON3aSCON1 = GLOEPH, T ermimer
SPLTVLAINR{SCNL)) PUTVLR{2) '
PUIVLEINR(SCN3#SCN1sSCN2)) EXECUT(RTINDEC).
IF RTINFEE,
$PUTVLAINRISONI)) PUTVLB(1) PUTVLBIC) EXECUTRRTNCEC )3 - aoiiiideam
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